README

This document describes the package of source code used for directional connectivity
computations in “Directional connectivity in hydrology and ecology” by Larsen et al. To run this
source code, Matlab is needed, together with the Matlab Image Processing toolbox and the
MatlabBGL library. The latter is open source and can be downloaded at
http://dgleich.github.com/matlab-bgl/.

Disclaimer: Unless noted otherwise, the codes below written by the USGS are public domain.
See individual third-party library and package descriptions for intellectual property information,
user agreements, and related information. Although the codes below have been used by the
USGS, no warranty, expressed or implied, is made by the USGS as to the accuracy and
functioning of such software and related material nor shall the fact of distribution constitute any
such warranty, and no responsibility is assumed by the USGS in connection therewith.

DCI Code Package:

connectivity at angle.m: Computes a specified directional connectivity index at a bearing
different from that of the image boundary. Calls to functions to create the adjacency or distance
matrix or to compute the directional connectivity index of choice are contained within this
function.

im2adjacency_skel.m: Converts a binary image to undirected adjacency and distance matrices,
using the skeleton network convention for defining links and nodes.

im2adjacency_full.m: Converts a binary image to undirected adjacency and distance matrices,
using the full network convention for defining links and nodes.

im2adjacency skel directed.m: Converts a binary image to directed adjacency and distance
matrices, using the skeleton network convention for defining links and nodes.

im2adjacency full directed.m: Converts a binary image to directed adjacency and distance
matrices, using the full network convention for defining links and nodes.

DClIu.m: Calculates the unweighted directional connectivity index (DCI) from a distance matrix.

DCIw.m: Calculates the distance-weighted directional connectivity index (DCI) from a distance
matrix.

despur.m: Called within connectivity at angle.m, this function corrects for spurs in the skeleton
image that arise as artifacts after image rotation.

indicator_semivariogram.m: Calculates the indicator semivariogram along the horizontal
dimension of the input matrix. The range of the semivariogram is the output, given in number of
pixels. To convert it to a dimensional range, it needs to be multiplied by dx.

topolCS.m: Calculates the directional integral connectivity scale length, given in number of
pixels. The direction along which it is computed is the horizontal dimension of the matrix (from
left to right). To convert the integral connectivity scale to a dimensional length, it needs to be
multiplied by dx.

6/21/12 9:51 AM /Users/lglarse.../connectivity at angle.m 1 of

function fval = connectivity at angle(theta, state, dx,dy, res, which_ index)

gconnectivity at angle.m
$Written and updated June 2012 by Laurel Larsen, lglarsen@usgs.gov
$US Geological Survey, Reston, VA

This function rotates (and, if desired, resamples) the input image with
respect to the computational grid in order to calculate directional
connectivity at a bearing of interest. The output (fval) is the
directional connectivity index convention of choice (weighted or
unweighted) at the bearing theta. This function can be called repeatedly
over a range of theta values to produce connectivity-orientation curves,
which are then used to identify the orientation of landscape features.

00 o° d° 0P o0 o o

Inputs to the function are:

0o

theta: Bearing (in degrees clockwise from the axis running along
dimension 1 of the source image) along which directional connectivity is
to be computed.

o 0P oo

state: a 2D matrix of zeros and ones, in which ones represent the
landscape patch of interest. The axis of interest along which directional
connectivity is computed is dimension 1 of this matrix.

o0 00 oo

dx: pixel length in cm (i.e., along dimension 1 of the variable "state").
The way this code is presently set up, dx can only be equal to dy or be
twice the value of dy.

o 0P oo

oo

dy: pixel width in cm (i.e., along dimension 2 of the variable "state").

res: Resolution multiplier fraction (either 1, 0.5, or 0.25, to leave the
image resolution unchanged or coarsen it by a factor of 2 or 4,
respectively).

o0 00 o°

which index: Specify ’'DCIu’or ’'DCIw’. The "u" designates an

unweighted index; the "w" a weighted index as described in the
documentation for those functions.

o° 0P o0 oo

$ 3
% %
state = state’; %Transpose the input matrix for the computations below

fprintf(’%s%d%s’, 'Current value of theta is ’, theta, '. ')

B 3535353535353 5353%3%353%5%%%%%
$ %2. If dx is twice as great as dy, create a new state matrix with twice
% as many pixels and dx equal to dy.
if dx~=dy

newstate = NaN(size(state,l), size(state,2)*2);

for jj = l:size(state,2)

newstate(:, 2*jj-1) = state(:,jj); newstate(:,2*jj) = state(:,3J);

end

state = newstate;

dx = dy;
else

newstate = state;
end

% 2323255522222 222599999992222222222222222%%%%% % %
% 3. Coarsen the resolution to enhance computational speed

% First, check to see whether an allowed resolution is specified.
if isempty(intersect(res, [1] 0.5 0.25]))

6/21/12 9:51 AM /Users/lglarse.../connectivity at angle.m 2 of 2

error(’'Crsn:resChk’, ’'Pick a resolution fraction of 1, 0.5, or 0.25")
end

$ If using a non-unity resolution fraction, resample the newstate matrix to
% half the number of pixels.
if res <1
newstate = NaN(floor(size(state)/2));
for ii = l:size(newstate,l)
for jj = l:size(newstate,2)
newstate(ii,jj) = (state(2*ii-1, 2*jj-1l)+state(2*ii, 2*jj-1l)+state(2*ii-1,%
2*jj) + state(2*ii, 2*3j3j))/4;
end
end
state = newstate;

$If using a resolution fraction of 0.25, resample the state matrix again to
% half the number of pixels.
if res < 0.5
newstate = NaN(floor(size(state)/2));
for ii = l:size(newstate,l)
for jj = l:size(newstate,2)
newstate(ii,jj) = (state(2*ii-1, 2*jj-1l)+state(2*ii, 2*jj-1l)+state(2*ii-e

1, 2*jj) + state(2*ii, 2*j3j))/4;

end
end
state = newstate;
end

end
AR R R A R L e AL E LR L
% 4. Rotate by theta degrees
state = imrotate(state, theta);
R R R R R R R e L R e R
% 5. Crop images to a square that cuts off all "blank" space caused by
% rotating a rectangular image with respect to a rectangular computational
% grid.
state = state(floor((size(state, 1l)-min(size(newstate))/sqrt(2))/2)+1l:floor((size(state,k

l)-min(size(newstate))/sqrt(2))/2) + floor(min(size(newstate))/sqrt(2)), floor((sizek
(state,2)-min(size(newstate))/sqrt(2))/2)+1l:floor((size(state,2)-min(size(newstate))kr
/sqrt(2))/2)+floor(min(size(newstate))/sqrt(2)));

$6. Skeletonize the image
skel = bwmorph(1l- state, "'skel’, Inf); %.*imrotate(ones(size(newstate)), theta); %Takek
the imrotate out if using crop approach

skel = despur(skel); %Gets rid of spurious vertical spurs due to artifacts of rotation
figure(7), imshow(skel), pause(0.5)

R R R R R L R e R
% %7. Calculate and plot the directional connectivity index at that bearing

switch which index
case 'DCIu’
[distance, adjacency, pixelx pixely] = im2adjacency_skel(skel, dx, dy, 1);
fval = DCIu(distance, dx, pixelx)
figure(l), hold on, plot(theta, fval, 'md’, 'MarkerFaceColor’, 'm’), ylabelk
(which index), xlabel(’theta’), pause(0.5)
case ’'DCIw’
[distance, adjacency, pixelx pixely] = imadjacency_hi(skel, dx, dy, 1);
fval = DCIw(distance, dx, pixelx)
figure(2), hold on, plot(theta, fval, 'md’, 'MarkerFaceColor’, 'm’), ylabele
(which index), xlabel(’theta’), pause(0.5)
end

6/21/12 9:55 AM /Users/lglarsen/Do.../im2adjacency skel.m 1 of 2

function [distance adjacency pixelx pixely] = im2adjacency_skel(state, dx, dy, e
despurred)

$im2adjacency_hi.m
$Written and updated June 2012 by Laurel Larsen, lglarsen@usgs.gov
3US Geological Survey, Reston, VA

$Convert a binary image to an adjacency matrix, defining links and nodes
gusing the skeleton network convention, whereby every "on" pixel (i.e.,
with a value of 1) in the skeleton image is treated as a node. The output
matrix ’‘distance’ contains the undirected distances between linked

nodes. The code is currently set up to compute the distance matrix from
physical distances. A future version will contain a modification for
readily computing functional distance matrices. ’‘Adjacency’ is a logical
matrix with ones on the diagonals and ones indicating that two nodes are
linked. "Pixely" is a vector of y-coordinates of the nodes; "pixelx" is a
vector of x—-coordinates of the nodes. Input variable definitions are as
follows:

o° 00 00 0 0@ o o 0P o

state: a 2D matrix of zeros and ones, in which ones represent either the
landscape patch of interest (if there is no fourth argument or the fourth
argument is not equal to one) or the image skeleton (if "despurred" = 1).
If the base image is rotated first within the function

"connectivity_ at_angle", use the image skeleton. Otherwise, use the
binary image for this variable. The axis of interest along which
directional connectivity is computed is dimension 1 of this matrix.

o° o° 00 0% 0P 0P o°

%dx: pixel length in cm (i.e., along dimension 1 of the variable "state").
$dy: pixel width in cm (i.e., along dimension 2 of the variable "state").

$despurred: Do NOT include this as an argument UNLESS the base image has
$been rotated with respect to the computational grid (to compute
%connectivity at a particular bearing). The argument is 1 if rotation has
$occurred, as implemented in connectivity at_ angle.m.
0035303508808 80380%85%35%3%%3%%3%%3%%3%5%%5%%%%3%%3%%3%%3%%%3%%%%
1. Skeletonize the image or read in the skeleton image if provided as
$variable "state".
if nargin < 4, despurred = NaN; end %Assign NaN to despurred if no argument for thate
variable was given.
if despurred ~= 1

skel = bwmorph(state’, ’skel’, Inf); %Requires Matlab’s image processing toolbox
else

skel = state’;

oo o

$33%%%%%

23%3%3%%3%%%%% $%%%
%2. Locate the node

% ¥33%%3%5%5%%%%

2%%%% %%
keleton image and

T332 335%5%5%%%%%

% %%
s their neighbors

%%%
of t
%a. Find the number of 8-connected neighbors of each pixel.

padded = zeros(size(skel)+[2 2]);

padded(2:size(padded,1)-1, 2:size(padded,2)-1) = skel;

neighbors = cat(3, padded(l:size(padded,l)-2, l:size(padded,2)-2), padded(l:size(padded,t
1)-2, 2:size(padded,2)-1), padded(l:size(padded,l)-2, 3:size(padded,2)), padded(2:sizer
(padded,1)-1, l:size(padded,2)-2), padded(2:size(padded,l)-1, 3:size(padded,2)), paddede
(3:size(padded,l), l:size(padded,2)-2), padded(3:size(padded,l), 2:size(padded,2)-1),k
padded(3:size(padded,l), 3:size(padded,2)));

n_connected = sum(neighbors,3);

$b. All skeleton pixels are defined as nodes.
node = skel;

%c. Save pixel coordinates of the nodes
ind = find(node);
[pixely pixelx] = ind2sub(size(skel), ind);

6/21/12 9:55 AM /Users/lglarsen/Do.../im2adjacency skel.m 2 of 2

5505053505053 53535353535353535353%3%53%3%3%3%53%53%5353%3%3%53%5%%%%%%%
$3. Calculate link distances
dd = sqrt(dx”"2+dy”2); %diagonal pixel distance
startlink = [];
endlink = [];
distlink = [];
for ii = l:length(ind) %Do this for all nodes
searchfromy = pixely(ii); searchfromx = pixelx(ii); %Coordinates of the pixel beinge
searched from
n_traced = 0; %number of links traced so far
which neighbors = find(neighbors(searchfromy, searchfromx,:));

while n_traced < n_connected(searchfromy, searchfromx) $Trace a new path to the nexte

downwind node unless all paths have already been traced.

n_traced = n_traced+l;

dist = 0;

which neighbor = which neighbors(n_traced);

newy = searchfromy; newx = searchfromx;

keep_searching = 1;

while keep_ searching

switch which neighbor %$Figure out distance of this component as the pixele

diagonal, length, or width

case{l}
newy = newy-1; newx = newx-1l;
dist = dist+dd;
case{2}
newy = newy-1;
dist = dist+dy;
case{3}
newy = newy-1; newx = newx+l;
dist = dist+dd;
case{4}
newx = newx—1l;
dist = dist+dx;
case{5}
newx = newx+l;
dist = dist+dx;
case{6}
newy = newy+l; newx = newx—1l;
dist = dist+dd;
case{7}
newy = newy+l;
dist = dist+dy;
case{8}
newy = newy+l; newx = newx+l;
dist = dist+dd;
end
endpoint = find(ind == sub2ind(size(skel), newy, newx));
keep_ searching = 0;
endlink = [endlink; endpoint]; %$Array of link ending index
startlink = [startlink; ii]; %Array of link starting index
distlink = [distlink; dist]; %Array of link distances
end
end
end
3222208003832 0%0%0%%3032%%0%0%%32%2%%0%0%232329%0%0%232329%9%9%%323%%%
%4. Output: Store adjacency and distance matrices as memory-saving sparse

$data structures
distance = sparse(startlink, endlink, distlink, ii, ii);
adjacency = sparse([startlink;(l:ii)’], [endlink; (1:ii)’], 1,ii,ii);

6/21/12 9:54 AM /Users/lglarsen/Do.../im2adjacency full.m 1 of 2

function [distance adjacency pixelx pixely] = im2adjacency full(state, dx, dy)

$im2adjacency full.m
$Written and updated June 2012 by Laurel Larsen, lglarsen@usgs.gov
$US Geological Survey, Reston, VA

¢Convert a binary image to an adjacency matrix, defining links and nodes
$using the "full" convention, whereby a node is any "on" pixel (i.e., with
a value of 1 in the "state" matrix. The output matrix ’‘distance’

contains the undirected distances between linked nodes. The code is
currently set up to compute the distance matrix from structural
distances. A future version will contain a modification for readily
computing functional adjacency matrices. ’'Adjacency’ is a logical matrix
with ones on the diagonals and ones indicating that two nodes are linked.
"Pixely" is a vector of y-coordinates of the nodes; "pixelx" is a vector
of x-coordinates of the nodes. Input variable definitions are as follows:

00 0° 00 00 0P 0P o o°

state: a 2D matrix of zeros and ones, in which ones represent the
landscape patch of interest. The axis of interest along which directional
connectivity is computed is dimension 1 of this matrix.

o0 00 o°

oe

dx: pixel length in cm (i.e., along dimension 1 of the variable "state").

$ dy: pixel width in cm (i.e., along dimension 2 of the variable "state").

%a. Find the number of 8-connected neighbors of each node.

padded = zeros(size(node)+[2 2]);

padded(2:size(padded,1)-1, 2:size(padded,2)-1) = node;

neighbors = cat(3, padded(l:size(padded,l)-2, l:size(padded,2)-2), padded(l:size(padded,r
1)-2, 2:size(padded,2)-1), padded(l:size(padded,l1)-2, 3:size(padded,2)), padded(2:sizek
(padded,1)-1, l:size(padded,2)-2), padded(2:size(padded,l)-1, 3:size(padded,2)), paddedk
(3:size(padded,l), l:size(padded,2)-2), padded(3:size(padded,l), 2:size(padded,2)-1),k
padded(3:size(padded,1l), 3:size(padded,2)));

n_connected = sum(neighbors,3);

$b. Save pixel coordinates of the nodes
ind = find(node);
[pixely pixelx] = ind2sub(size(node), ind);

dd = sqr
startlink
endlink =
distlink =
for ii = l:length(ind) %Do this for all nodes
searchfromy = pixely(ii); searchfromx = pixelx(ii); %Coordinates of the pixel beingk
searched from
n_traced = 0; %number of links traced so far
which neighbors = find(neighbors(searchfromy, searchfromx,:));
while n _traced < n_connected(searchfromy, searchfromx) %Trace a new path to the nextek
downwind node unless all paths have already been traced.
n_traced = n_traced+1;
dist = 0;
which_neighbor = which neighbors(n_traced);
newy = searchfromy; newx = searchfromx;
keep_searching = 1;
while keep searching
switch which neighbor %$Figure out distance of this component as the pixelk

~e

6/21/12 9:54 AM /Users/lglarsen/Do.../im2adjacency full.m

diagonal, length, or width
case{l}
newy = newy-1; newx = newx-1l;
dist = dist+dd;
case{2}
newy = newy-—1;
dist = dist+dy;
case{3}
newy = newy-1; newx = newx+l;
dist = dist+dd;
case{4}
newx = newx—1l;
dist = dist+dx;
case{5}
newx = newx+l;
dist = dist+dx;
case{6}
newy = newy+l; newx = newx—1l;
dist = dist+dd;
case{7}
newy = newy+l;
dist = dist+dy;
case{8}
newy = newy+l; newx = newx+l;
dist = dist+dd;
end
endpoint = find(ind == sub2ind(size(node),
keep_searching = 0;
endlink = [endlink; endpoint];
startlink = [startlink; ii];
distlink = [distlink; dist];
end
end
end
%4 . Output: Store adjacency and

%data structures

distance =
adjacency =

sparse(startlink,

sparse([startlink;(l:ii) ‘"],

endlink, distlink,

$Array of link ending index
¢Array of link starting index
$Array of link distances

linkage matrices as memory-saving sparse

[endlink;

000000000
50000000

oe
oe

ii,

(l:ii)"], 1,ii,ii);

6/21/12 9:55 AM /Users/lg.../im2adjacency skel directed.m 1 of 2

function [distance adjacency pixelx pixely] = im2adjacency_ skel directed(state, dx, dy, e
despurred)

$im2adjacency skel directed.m
$Written and updated June 2012 by Laurel Larsen, lglarsen@usgs.gov
3US Geological Survey, Reston, VA

$Convert a binary image to an adjacency matrix, defining links and nodes
gusing the skeleton network convention, whereby every "on" pixel (i.e.,
with a value of 1) in the skeleton image is treated as a node. The output
matrix ’‘distance’ contains the directed distances between linked

nodes. The code is currently set up to compute the distance matrix from
physical distances. A future version will contain a modification for
readily computing functional distance matrices. ’‘Adjacency’ is a logical
matrix with ones on the diagonals and ones indicating that two nodes are
linked. "Pixely" is a vector of y-coordinates of the nodes; "pixelx" is a
vector of x—-coordinates of the nodes. Input variable definitions are as
follows:

o° 00 00 0 0@ o o 0P o

state: a 2D matrix of zeros and ones, in which ones represent either the
landscape patch of interest (if there is no fourth argument or the fourth
argument is not equal to one) or the image skeleton (if "despurred" = 1).
If the base image is rotated first within the function

"connectivity_ at_angle", use the image skeleton. Otherwise, use the
binary image for this variable. The axis of interest along which
directional connectivity is computed is dimension 1 of this matrix.

o° o° 00 0% 0P 0P o°

%dx: pixel length in cm (i.e., along dimension 1 of the variable "state").
$dy: pixel width in cm (i.e., along dimension 2 of the variable "state").

$despurred: Do NOT include this as an argument UNLESS the base image has
$been rotated with respect to the computational grid (to compute
%connectivity at a particular bearing). The argument is 1 if rotation has
$occurred, as implemented in connectivity at_ angle.m.
0035303508808 80380%85%35%3%%3%%3%%3%%3%5%%5%%%%3%%3%%3%%3%%%3%%%%
1. Skeletonize the image or read in the skeleton image if provided as
$variable "state".
if nargin < 4, despurred = NaN; end %Assign NaN to despurred if no argument for thate
variable was given.
if despurred ~= 1

skel = bwmorph(state’, ’skel’, Inf); %Requires Matlab’s image processing toolbox
else

skel = state’;
end

oo o

232332332332 2%%23%3%%%%
2. Locate the nodes of t

o0 o°

%a. Find the number of 8-connected neighbors of each pixel.

padded = zeros(size(skel)+[2 2]);

padded(2:size(padded,1)-1, 2:size(padded,2)-1) = skel;

neighbors = cat(3, zeros(size(skel)), padded(l:size(padded,l)-2, 2:size(padded,2)-1),k
padded(l:size(padded,1l)-2, 3:size(padded,2)), zeros(size(skel)), padded(2:size(padded,l)te
-1, 3:size(padded,2)),zeros(size(skel)), padded(3:size(padded,l), 2:size(padded,2)-1),r
padded(3:size(padded,l), 3:size(padded,2)));

n_connected = sum(neighbors,3);

$b. All skeleton pixels are defined as nodes.
node = skel;

%c. Save pixel coordinates of the nodes
ind = find(node);
[pixely pixelx] = ind2sub(size(skel), ind);

6/21/12 9:55 AM /Users/lg.../im2adjacency skel directed.m 2 of 2

335353535353 53%353%353%5%%%%5%%%
$3. Calculate link distances
dd = sqrt(dx”"2+dy”2); %diagonal pixel distance
startlink = [];
endlink = [];
distlink = [];
for ii = 1l:length(ind)
searchfromy = pixely(ii); searchfromx = pixelx(ii); %Coordinates of the pixel beingk
searched from
n_traced = 0; %number of links traced so far
which_neighbors = find(neighbors(searchfromy, searchfromx,:));

while n traced < n_connected(searchfromy, searchfromx) %Trace a new path to the nextek

downwind node unless all paths have already been traced.

n _traced = n_traced+l;

dist = 0;

which_neighbor = which neighbors(n_traced);

newy = searchfromy; newx = searchfromx;

keep_searching = 1;

while keep_searching

switch which neighbor %$Figure out distance of this component as the pixelk

diagonal, length, or width

case{2}
newy = newy-1;
dist = dist+dy;
case{3}
newy = newy—-1l; newx = newx+l;
dist = dist+dd;
case{5}
newx = newx+l;
dist = dist+dx;
case{7}
newy = newy+1l;
dist = dist+dy;
case{8}
newy = newy+l; newx = newx+l;
dist = dist+dd;
end
endpoint = find(ind == sub2ind(size(skel), newy, newx));
keep_searching = 0;
endlink = [endlink; endpoint]; %$Array of link ending index
startlink = [startlink; ii]; %Array of link starting index
distlink = [distlink; dist]; %Array of link distances
end
end
end
0535353508808 %0300%80%38%3%%23%%3%%3%%53%%53%5%%%%3%%3%%3%%3%%%3%%%%
%4 . Output: Store adjacency and distance matrices as memory-saving sparse

%$data structures
distance = sparse(startlink, endlink, distlink, ii, ii);
adjacency = sparse([startlink;(l:ii)’], [endlink; (1:ii)’"], 1,ii,ii);

6/21/12 9:53 AM /Users/lg.../im2adjacency full directed.m 1 of 2

function [distance adjacency pixelx pixely] = im2adjacency full directed(state, dx, dy)

$im2adjacency full directed.m
$Written and updated June 2012 by Laurel Larsen, lglarsen@usgs.gov
$US Geological Survey, Reston, VA

¢Convert a binary image to an adjacency matrix, defining links and nodes
$using the "full" convention, whereby a node is any "on" pixel (i.e., with
a value of 1 in the "state" matrix. The output matrix ’‘distance’

contains the directed distances between linked nodes. The code is
currently set up to compute the distance matrix from structural
distances. A future version will contain a modification for readily
computing functional adjacency matrices. ‘Adjacency’ is a logical matrix
with ones on the diagonals and ones indicating that two nodes are linked.
"Pixely" is a vector of y-coordinates of the nodes; "pixelx" is a vector
of x-coordinates of the nodes. Input variable definitions are as follows:

00 0° 00 00 0P 0P o o°

state: a 2D matrix of zeros and ones, in which ones represent the
landscape patch of interest. The axis of interest along which directional
connectivity is computed is dimension 1 of this matrix.

o0 00 o°

oo

dx: pixel length in cm (i.e., along dimension 1 of the variable "state").

$ dy: pixel width in cm (i.e., along dimension 2 of the variable "state").

2%%% 2253535353535 353%53%53%5%%5%%%%%
2. Locate the nodes and their neighbo

%a. Find the number of 8-connected neighbors of each node.

padded = zeros(size(node)+[2 2]);

padded(2:size(padded,1)-1, 2:size(padded,2)-1) = node;

neighbors = cat(3, zeros(size(skel)), padded(l:size(padded,l)-2, 2:size(padded,2)-1),k
padded(l:size(padded,1)-2, 3:size(padded,2)), zeros(size(skel)), padded(2:size(padded,l)k
-1, 3:size(padded,2)), zeros(size(skel)), padded(3:size(padded,l), 2:size(padded,2)-1),k
padded(3:size(padded,l), 3:size(padded,2)));

n_connected = sum(neighbors,3);

$b. Save pixel coordinates of the nodes
ind = find(node);

[pixely pixelx] = ind2sub(size(skel), ind);

5353535353535 353535353535353%%%53%53%53%3%3%53%53%3%3%53%53%53%53%5%%%3%5%%5%%5%%%%%
$3. Calculate link distances

dd = sqrt(dx”"2+dy”2); %diagonal pixel distance

startlink = [];

endlink = [];

distlink = [];

for ii = l:length(ind) %Do this for all nodes

searchfromy = pixely(ii); searchfromx = pixelx(ii); %Coordinates of the pixel beingk
searched from
n_traced = 0; %number of links traced so far
which neighbors = find(neighbors(searchfromy, searchfromx,:));
while n_traced < n_connected(searchfromy, searchfromx) %$Trace a new path to the nextek
downwind node unless all paths have already been traced.
n_traced = n_traced+1;
dist = 0;
which neighbor = which neighbors(n_traced);
newy = searchfromy; newx = searchfromx;
keep_ searching = 1;
while keep_searching
switch which neighbor %Figure out distance of this component as the pixelk
diagonal, length, or width

6/21/12 9:53 AM /Users/lg.../im2adjacency full directed.m 2 of

case{2}
newy = newy-1;
dist = dist+dy;
case{3}
newy = newy-1l; newx = newx+l;
dist = dist+dd;
case{5}
newx = newx+l;
dist = dist+dx;
case{7}
newy = newy+l;
dist = dist+dy;
case{8}
newy = newy+l; newx = newx+l;
dist = dist+dd;
end
endpoint = find(ind == sub2ind(size(skel), newy, newx));
keep_searching = 0;
endlink = [endlink; endpoint]; %$Array of link ending index
startlink = [startlink; ii]; %$Array of link starting index
distlink = [distlink; dist]; %Array of link disances
end
end
end
0053358585585 3853852382382 3%%3%%3%%53%%%%%%%%%23%%3%%3%%53%%%%%%%

$4. Output: Store adjacency and linkage matrices as memory
$data structures

distance = sparse(startlink, endlink, distlink, ii, ii);
adjacency = sparse([startlink;(l:ii)’], [endlink; (1:ii)’'], 1,ii,ii);

|
0]

aving sparse

6/21/12 10:03 AM /Users/lglarsen/Documents/Ever.../DCIu.m 1 of

function DCI = DCIu(distance, dx, pixelx)

$DCIu.m
$Written and updated June 2012 by Laurel Larsen, lglarsen@usgs.gov
$US Geological Survey, Reston, VA

This function calculates the unweighted directional connectivity index,

in which connectivity at all scales (down to the length of a pixel)
contributes equally to the index. Inputs are a distance matrix and

array of node locations from im2adjacency skel.m or im2adjacency_ full.m,
depending on whether the "full" or "skel" convention for defining links and
nodes is employed. The output is the directional connectivity index

(DCI), scaled between 0 and 1.

This function requires the MatlabBGL library (Gleich, 2011) to be
installed. This open-source library can be downloaded at
http://dgleich.github.com/matlab-bgl/

0° 00 00 0% 0P o° o o 0% A d° o

dx = dx/100; %Converts to meters so that we’re not dealing with such large numbers.
distance = distance/100; %Converts to meters so that we’re not dealing with such largek
numbers.

R = max(pixelx); %The number of rows in the original image

start nodes = find(pixelx~=R); %Nodes in the last row of the image cannot bek
starting/source nodes.

num = 0; %Initialize numerator of summation
den = 0; %Initialize denominator of summation
for ii = l:length(start nodes)

d = shortest paths(distance, start nodes(ii)); %A vector of the shortest pathk
between starting/source node and all other nodes

r = pixelx(start nodes(ii)); %The row of the starting/source node

for jj = r+l1l:R

end nodes = find(pixelx == jj);
if ~isempty(end_nodes)
dij = min(d(end_nodes)); %Shortest distance (structural or functional)e

between starting/source node and any node in the next row
num = num+dx*(jj-r)/dij;
den den+1;
end
end
end
DCI = num/den;

6/21/12 10:01 AM /Users/lglarsen/Documents/Ever.../DCIw.m 1 of 1

function DCI = DCIw(distance, dx, pixelx)

$DCIw.m
$Written and updated June 2012 by Laurel Larsen, lglarsen@usgs.gov
$US Geological Survey, Reston, VA

o°

This function calculates the weighted directional connectivity index,

in which connectivity at large scales is weighted preferentially.
Weighting is proportional to the projected downwind distance between each
pair of nodes. Inputs are a distance matrix and array of node locations
from im2adjacency skel.m or im2adjacency_ full.m, depending on whether the
"full" or "skel" convention for defining links and nodes is employed. The
output is the directional connectivity index (DCI), scaled between 0 and
1.

This function requires the MatlabBGL library (Gleich, 2011) to be
installed. This open-source library can be downloaded at
http://dgleich.github.com/matlab-bgl/

G e e e e e e e e e e e ot ot ot ot ot ot et ot ot o ot ot ot et ot ot ot ot ot ot o ot ot o ot ot ot i o ot e

0° 00 00 0% 0P AP o° o 0% A dP o

o

dx = dx/100; %Converts to meters so that we’re not dealing with such large numbers.
distance = distance/100; %Converts to meters so that we’re not dealing with such largek
numbers.
R = max(pixelx); %$The number of rows in the original image
start nodes = find(pixelx~=R); %Nodes in the last row of the image cannot bek
starting/source nodes.
num = 0; %Initialize numerator of summation
den = 0; %Initialize denominator of summation
for ii = l:length(start nodes)

d = shortest paths(distance, start nodes(ii)); %A vector of the shortest pathek
between starting/source node and all other nodes

r = pixelx(start nodes(ii)); %The row of the starting/source node

for jj = r+1:R

end nodes = find(pixelx == jj);
if ~isempty(end_nodes)
dij = min(d(end nodes)); %Shortest distance (structural or functional)e

between starting/source node and any node in the next row
num num+dx”"2* (jj-r)"*2/dij;
den den+dx* (jj-r);
end
end
end
DCI = num/den;

6/21/12 9:53 AM /Users/lglarsen/Documents/Eve.../despur.m 1 of 1

function A = despur(A)

G e e e e e e e e e e ot ot ot ot e o o ot o ot ot et o ot et o o ot et o ot ot e o ot et i ot s e o ot

¢despur.m
$Written and updated June 2012 by Laurel Larsen, lglarsen@usgs.gov
$US Geological Survey, Reston, VA

When Matlab rotates an image and then creates a skeleton from it,
vertical spurs appear as an artifact. This function removes those spurs
from the skeleton image (A), returning the skeleton without the spurs.

00 0P o°

nrows = size(A,1l); %Number of rows in the skeleton image.
ncols = size(A,2); %Number of columns in the skeleton image.
go_on = 1;
while go_on == 1
B = [A(nrows,:); A; A(l,:)]; B = [B(:,ncols) B B(:,1)]; %Rearrange data matrix tok

perform matrix functions without using a for loop.

nneighbors = B(l:nrows, l:ncols)+B(2:nrows+l, l:ncols)+B(3:nrows+2, l:ncols)+B(l:k
nrows, 2:ncols+1l)+B(3:nrows+2, 2:ncols+1l)+B(l:nrows, 3:ncols+2)+B(2:nrows+l, 3:ncols+2)e
+B(3:nrows+2, 3:ncols+2); %A matrix containing information about the number of neighborsk
each pixel has.

verticneighbors = B(l:nrows, 2:ncols+l) + B(3:nrows+2, 2:ncols+l); %A matrixe
containing information about the number of vertical neighbors each pixel has.
these_indices = find(nneighbors == 1 & verticneighbors == 1 & A == 1); %$Indicesk

containing spurs.
if isempty(these_indices)
go on = 0;
else
A(these_indices) = 0; %Remove the spurs by setting them equal to 0.
end
end

6/21/12 9:56 AM /Users/lglar.../indicator semivariogram.m 1 of 1

function [gamma, range] = indicator semivariogram(state)

$indicator_semivariogram.m
$Written and updated June 2012 by Laurel Larsen, lglarsen@usgs.gov
$US Geological Survey, Reston, VA

$This function calculates indicator semivariograms along the horizontal
$dimension of the matrix. The range is given in number of pixels and should
$be multiplied by dx.

$Flow in the state matrix is assumed to be from left to right.

n_rows = size(state,l); %Number of rows in state
n_col = size(state,2); $Number of columns in state
h = 1:n_col-1; %separation bins
N = zeros(size(h)); %Number of pairs summed in each separation bin
gamma = zeros(size(h));
for ¢ = 1:n_col-1

gamma(l:n col-c) = gamma(l:n_col-c)+sum(((state(:, c+l:size(state,2)) — repmat(statek
(¢yc), 1, n col-c)).*repmat(state(:,c), 1, n_col-c)).”2, 1); %An array of thee
semivariogram summation corresponding to column c¢ for h =1, 2, ...n

N(l:n_col-c) = N(l:n_col-c) + sum(repmat(state(:,c),1l,n_col-c), 1); %Number ofk
sample pairs in each lag distance bin.

end
gamma = gamma./(2*N); %Indicator semivariogram

figure, plot(h, gamma, ‘k.’)

xstop = find(diff(gamma)<0, 1, ’'first’); %Comment this row or the next to select ther
convention for defining which points to use for fitting the theoretical semivariogram.
% xstop = round(input(’'Maximum value of h for range-fitting is?\n’));

beta = nlinfit(h(l:xstop), gamma(l:xstop), @rangefitter, [0 0.25 3*xstop/4]); %Fit ther
theoretical semivariogram

hold on

yhat = beta(l)+beta(2)*(l-exp(-h(l:xstop)./beta(3))); %The theoretical semivariogram
plot(h(l:xstop), yhat, 'k—")

range = beta(3); %Output semivariogram range.

$rangefitter.m

$Copyright 2012 by Laurel Larsen, lglarsen@usgs.gov
$US Geological Survey, Reston, VA

function yhat = rangefitter(beta, h)

yhat = beta(l)+beta(2)*(1l-exp(-h./beta(3)));

6/21/12 9:56 AM /Users/lglarsen/Documents/Ev.../topoICS.m 1 of 1

function [h,p,ICS] = topoICS(state, adjacency)

%¥topoICS.m
$Written and updated June 2012 by Laurel Larsen, lglarsen@usgs.gov
$US Geological Survey, Reston, VA

$Gives the array of separation distances (h) and probabilities that two
gones in the downslope direction are connected (p)-.

$Flow in the state matrix is assumed to be from left to right.

$It is assumed that the reachability matrix (RM) input will be a
¢directed matrix so that water cannot flow upstream to go downstream.

RM = all shortest paths(adjacency, struct(’inf’, 9999)); %Come up with a "reachabilityk
matrix" (A matrix containing 1 if node pairs are directly or indirectly connected and Ok
if they are not connected.)

RM = sparse(RM-9999); %Store the matrix in sparse format

RM(RM<0) = 1;

n_rows = size(state,l); %$Number of rows in state

n_col = size(state,2); $Number of columns in state

h = 1:n _col-1; %separation bins

n_ones = zeros(size(h)); %Number of pairs of ones in each downslope separation bin
n_connected = zeros(size(h)); %Number of connected pairs of ones in each downslopek
separation bin

state_index = reshape(cumsum(reshape(state, numel(state), 1)), n_rows, n_col); %index ofe
each node in the RM

for ¢ = 1:n_col-1
pairs = repmat(state(:,c), 1, n col-c).*state(:, c+l:n col); %1 for pairs of 1s
n_ones(l:n _col-c) = n_ones(l:n _col-c)+sum(pairs, 1); S$Number of pairs of ones ink
each h bin
start i = repmat(state index(:,c), 1, n_col-c).*pairs; %$Gives the index of thee
upstream node for each pair. Zeros elsewhere.
end_i = state_index(:,c+l:n_col).*pairs; %Gives the index of the downstream memberk
of each pair of nodes
connected = RM(sub2ind(size(RM), start_i(start_i>0), end_i(end_i>0)));
connected mat = start i; %Initialize matrix of connected pairs
connected mat(start_i>0) = connected; %1 where pairs of ones are connected
n_connected(l:n_col-c) = n_connected(l:n_col-c)+sum(connected mat, 1); %Number ofk
connected pairs in each h bin
end
p = n_connected./n ones; $%$Probability that a pair of 1s is connected in the downslopek
direction for each h bin.
figure, plot(h,p, 'k-d’)
ICS = sum(p);

